The cube-like complexes and the Poincaré - Miranda theorem

Maria Kidawa and Przemysław Tkacz

Cardinal Stefan Wyszyński University in Warsaw

February 3, 2016

The Poincaré-Miranda theorem

Theorem (Poincaré 1883)

If

$$
\begin{aligned}
& f=\left(f_{1}, f_{2}, \ldots, f_{n}\right): I^{n} \rightarrow \mathbb{R}^{n}, \\
& f_{i}\left(I_{i}^{-}\right) \subset(-\infty, 0], f_{i}\left(I_{i}^{+}\right) \subset[0, \infty), \\
& I_{i}^{-}:=\left\{x \in I^{n}: x(i)=-1\right\}, I_{i}^{+}:=\left\{x \in I^{n}: x(i)=1\right\},
\end{aligned}
$$

then there is $c \in I^{n}$ such that $f(c)=(0,0, \ldots, 0)$

The Poincaré-Miranda theorem

Theorem (Poincaré 1883)

If

$$
\begin{aligned}
& f=\left(f_{1}, f_{2}, \ldots, f_{n}\right): I^{n} \rightarrow \mathbb{R}^{n}, \\
& f_{i}\left(I_{i}^{-}\right) \subset(-\infty, 0], f_{i}\left(I_{i}^{+}\right) \subset[0, \infty), \\
& I_{i}^{-}:=\left\{x \in I^{n}: x(i)=-1\right\}, I_{i}^{+}:=\left\{x \in I^{n}: x(i)=1\right\},
\end{aligned}
$$

then there is $c \in I^{n}$ such that $f(c)=(0,0, \ldots, 0)$

The Poincaré-Miranda theorem

Theorem (Poincaré 1883)

If

$$
\begin{array}{rlrl}
f & =\left(f_{1}, f_{2}, \ldots, f_{n}\right): I^{n} \rightarrow \mathbb{R}^{n}, \\
f_{i}\left(I_{i}^{-}\right) & \subset(-\infty, 0], & & f_{i}\left(I_{i}^{+}\right) \subset[0, \infty), \\
I_{i}^{-}:=\left\{x \in I^{n}: x(i)=-1\right\}, & & I_{i}^{+}:=\left\{x \in I^{n}: x(i)=1\right\},
\end{array}
$$

then there is $c \in I^{n}$ such that $f(c)=(0,0, \ldots, 0)$

Theorem (Miranda 1940)

The Poincaré theorem is equivalent to the Brouwer fixed point theorem.

The Poincaré-Miranda theorem

Theorem (Poincaré 1883)

If

$$
\begin{aligned}
& f=\left(f_{1}, f_{2}, \ldots, f_{n}\right): I^{n} \rightarrow \mathbb{R}^{n}, \\
& f_{i}\left(I_{i}^{-}\right) \subset(-\infty, 0], \\
& f_{i}\left(I_{i}^{+}\right) \subset[0, \infty), \\
& I_{i}^{-}:=\left\{x \in I^{n}: x(i)=-1\right\}, I_{i}^{+}:=\left\{x \in I^{n}: x(i)=1\right\},
\end{aligned}
$$

then there is $c \in I^{n}$ such that $f(c)=(0,0, \ldots, 0)$

Theorem (Miranda 1940)

The Poincaré theorem is equivalent to the Brouwer fixed point theorem.

Problem

Can we generalize the Poincaré theorem?

Definitions

A : finite, nonempty set
$\mathcal{P}_{n+1}(A)$: all subsets of A with cardinality $n+1$
$\mathcal{P}_{n+1}(A) \ni S: n$ - simplex defined on A
$T \in \mathcal{P}_{k+1}(S): k$ - face of an n-simplex $S, k<n$

Definitions

A : finite, nonempty set
$\mathcal{P}_{n+1}(A)$: all subsets of A with cardinality $n+1$
$\mathcal{P}_{n+1}(A) \ni S: n$ - simplex defined on A
$T \in \mathcal{P}_{k+1}(S): k$ - face of an n-simplex $S, k<n$

Definitions

A : finite, nonempty set
$\mathcal{P}_{n+1}(A)$: all subsets of A with cardinality $n+1$
$\mathcal{P}_{n+1}(A) \ni S: n$ - simplex defined on A
$T \in \mathcal{P}_{k+1}(S): k$ - face of an n-simplex $S, k<n$

Definitions

A : finite, nonempty set
$\mathcal{P}_{n+1}(A)$: all subsets of A with cardinality $n+1$
$\mathcal{P}_{n+1}(A) \ni S: n$ - simplex defined on A
$T \in \mathcal{P}_{k+1}(S): k$ - face of an n-simplex $S, k<n$

Definitions

A : finite, nonempty set
$\mathcal{P}_{n+1}(A)$: all subsets of A with cardinality $n+1$
$\mathcal{P}_{n+1}(A) \ni S: n$ - simplex defined on A
$T \in \mathcal{P}_{k+1}(S): k$ - face of an n-simplex $S, k<n$

Definitions

A : finite, nonempty set
$\mathcal{P}_{n+1}(A)$: all subsets of A with cardinality $n+1$
$\mathcal{P}_{n+1}(A) \ni S: n$ - simplex defined on A
$T \in \mathcal{P}_{k+1}(S): k$ - face of an n-simplex $S, k<n$

Definitions

A : finite, nonempty set
$\mathcal{P}_{n+1}(A)$: all subsets of A with cardinality $n+1$
$\mathcal{P}_{n+1}(A) \ni S: n$ - simplex defined on A
$T \in \mathcal{P}_{k+1}(S): k$ - face of an n-simplex $S, k<n$

Definitions

A : finite, nonempty set
$\mathcal{P}_{n+1}(A)$: all subsets of A with cardinality $n+1$
$\mathcal{P}_{n+1}(A) \ni S: n$ - simplex defined on A
$T \in \mathcal{P}_{k+1}(S): k$ - face of an n-simplex $S, k<n$

Definitions

A : finite, nonempty set
$\mathcal{P}_{n+1}(A)$: all subsets of A with cardinality $n+1$
$\mathcal{P}_{n+1}(A) \ni S: n$ - simplex defined on A
$T \in \mathcal{P}_{k+1}(S): k$ - face of an n-simplex $S, k<n$

Definitions

Definition

A family $\mathcal{K} \subset \mathcal{P}(A)$ is called an abstract complex, if for all $V \in \mathcal{K}$ we have $\mathcal{P}(V) \subset \mathcal{K}$.

Definitions

Definition

A family $\mathcal{K} \subset \mathcal{P}(A)$ is called an abstract complex, if for all $V \in \mathcal{K}$ we have $\mathcal{P}(V) \subset \mathcal{K}$.

Definition

A polyhedron is a pair of symplicial complex and a union of symplexes.

Definitions

Definition

A family $\mathcal{K} \subset \mathcal{P}(A)$ is called an abstract complex, if for all $V \in \mathcal{K}$ we have $\mathcal{P}(V) \subset \mathcal{K}$.

Definition

A polyhedron is a pair of symplicial complex and a union of symplexes.

Observation

Each polyhedron determines an abstract complex called its vertex-scheme.

Definitions

Definition

$$
\begin{gathered}
\emptyset \neq \mathcal{S} \subset \mathcal{P}(A) \\
\mathcal{K}(\mathcal{S})=\bigcup_{S \in \mathcal{S}}\{\mathcal{P}(S)\}: \text { a complex generated by } \mathcal{S}
\end{gathered}
$$

Definitions

Definition

$$
\begin{gathered}
\emptyset \neq \mathcal{S} \subset \mathcal{P}(A) \\
\mathcal{K}(\mathcal{S})=\bigcup_{S \in \mathcal{S}}\{\mathcal{P}(S)\}: \text { a complex generated by } \mathcal{S}
\end{gathered}
$$

Definition

$$
\mathcal{S} \subset \mathcal{P}_{n+1}(A)
$$

$\partial \mathcal{K}(\mathcal{S})$: a boundary of $\mathcal{K}(\mathcal{S})$, i.e. a subcomplex generated by the family:

$$
\left\{T \in \mathcal{P}_{n}(A): \exists!S \in \mathcal{S} \text { such that } T \subset S\right\}
$$

Definitions

Definition

$$
\begin{gathered}
\emptyset \neq \mathcal{S} \subset \mathcal{P}(A) \\
\mathcal{K}(\mathcal{S})=\bigcup_{S \in \mathcal{S}}\{\mathcal{P}(S)\}: \text { a complex generated by } \mathcal{S}
\end{gathered}
$$

Definition

$$
\mathcal{S} \subset \mathcal{P}_{n+1}(A)
$$

$\partial \mathcal{K}(\mathcal{S})$: a boundary of $\mathcal{K}(\mathcal{S})$, i.e. a subcomplex generated by the family:

$$
\left\{T \in \mathcal{P}_{n}(A): \exists!S \in \mathcal{S} \text { such that } T \subset S\right\}
$$

Intuition

Intuition

(1) $\partial I^{2}=\bigcup_{i=1}^{2} I_{i}^{-} \cup I_{i}^{+}$,
(2) Each one of $I_{1}^{-}, I_{1}^{+}, I_{2}^{-}, I_{2}^{+}$is an 1-dimensional cube
(3) Opposite faces of an 1- dimensional cube I_{i}^{ε} have the folowing form: $I_{i}^{\varepsilon} \cap I_{j}^{-}, I_{i}^{\varepsilon} \cap I_{j}^{+}$for $j \neq i$.

Let $\mathcal{K}^{0}=\{a\}$, where $a \in A$.
The complex \mathcal{K}^{n} generated by $\mathcal{S} \subset \mathcal{P}_{n+1}(A)$ is an n-cube-like complex, if:
(A) For all $(n-1)$-face $T \in \mathcal{K}^{n} \backslash \partial \mathcal{K}^{n}$ there exist exactly two n-simplexes $S, S^{\prime} \in \mathcal{K}^{n}$ such that $S \cap S^{\prime}=T$.
(B) There exist subcomplexes $\mathcal{F}_{i}^{-}, \mathcal{F}_{i}^{+}$for $i \in\{1,2, \ldots, n\}$, called i-th opposite faces such that:
(B_{1}) $\partial \mathcal{K}^{n}=\bigcup_{i=1}^{n} \mathcal{F}_{i}^{-} \cup \mathcal{F}_{i}^{+}$
$\left(\mathrm{B}_{2}\right) \mathcal{F}_{i}^{-} \cap \mathcal{F}_{i}^{+}=\emptyset$ for $i=\{1,2, \ldots, n\}$
$\left(\mathrm{B}_{3}\right) \forall_{i \in\{1, \ldots, n\}}, \forall_{\varepsilon \in\{+,-\}} \quad \mathcal{F}_{i}^{\varepsilon}$ is an $(n-1)$-cube-like complex, such that its opposite faces have the following form $\mathcal{F}_{i}^{\varepsilon} \cap \mathcal{F}_{j}^{-}, \mathcal{F}_{i}^{\varepsilon} \cap \mathcal{F}_{j}^{+}, j \neq i$.

\mathcal{F}_{2}^{-}

\mathcal{F}_{2}^{-}

Example

The construction of an n-cube-like complex

Definition

$S=\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}:$ an n-simplex; $a, b \in L$.
An S-doubled complex $d c(S)_{a}^{b}$ is an abstract complex $\mathcal{K}(\mathcal{F}) \subset \mathcal{P}(S \times\{a, b\})$ generated by

$$
\mathcal{F}=\left\{\left\{\left(v_{0}, a\right), \ldots,\left(v_{i}, a\right),\left(v_{i}, b\right), \ldots,\left(v_{n}, b\right)\right\}: i \in\{0,1, \ldots, n\}\right\}
$$

The construction of an n-cube-like complex

Definition

$S=\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}:$ an n-simplex; $a, b \in L$.
An S-doubled complex $d c(S)_{a}^{b}$ is an abstract complex $\mathcal{K}(\mathcal{F}) \subset \mathcal{P}(S \times\{a, b\})$ generated by

$$
\mathcal{F}=\left\{\left\{\left(v_{0}, a\right), \ldots,\left(v_{i}, a\right),\left(v_{i}, b\right), \ldots,\left(v_{n}, b\right)\right\}: i \in\{0,1, \ldots, n\}\right\}
$$

Example

An S-doubled complex in 1-dimensional case.

The construction of an n-cube-like complex

Definition

$S=\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}:$ an n-simplex; $a, b \in L$.
An S-doubled complex $d c(S)_{a}^{b}$ is an abstract complex $\mathcal{K}(\mathcal{F}) \subset \mathcal{P}(S \times\{a, b\})$ generated by

$$
\mathcal{F}=\left\{\left\{\left(v_{0}, a\right), \ldots,\left(v_{i}, a\right),\left(v_{i}, b\right), \ldots,\left(v_{n}, b\right)\right\}: i \in\{0,1, \ldots, n\}\right\}
$$

Example

An S-doubled complex in 1-dimensional case.

$$
v_{0} \times\{a\} \quad v_{1} \times\{a\}
$$

The construction of an n-cube-like complex

Definition

$S=\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}:$ an n-simplex; $a, b \in L$.
An S-doubled complex $d c(S)_{a}^{b}$ is an abstract complex $\mathcal{K}(\mathcal{F}) \subset \mathcal{P}(S \times\{a, b\})$ generated by

$$
\mathcal{F}=\left\{\left\{\left(v_{0}, a\right), \ldots,\left(v_{i}, a\right),\left(v_{i}, b\right), \ldots,\left(v_{n}, b\right)\right\}: i \in\{0,1, \ldots, n\}\right\}
$$

Example

An S-doubled complex in 1-dimensional case.
$v_{0} \times\{b\} \quad v_{0} \times\{b\}$
$v_{0} \times\{a\} \quad v_{1} \times\{a\}$

The construction of an n-cube-like complex

Definition

$S=\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}:$ an n-simplex; $a, b \in L$.
An S-doubled complex $d c(S)_{a}^{b}$ is an abstract complex $\mathcal{K}(\mathcal{F}) \subset \mathcal{P}(S \times\{a, b\})$ generated by

$$
\mathcal{F}=\left\{\left\{\left(v_{0}, a\right), \ldots,\left(v_{i}, a\right),\left(v_{i}, b\right), \ldots,\left(v_{n}, b\right)\right\}: i \in\{0,1, \ldots, n\}\right\}
$$

Example

An S-doubled complex in 1-dimensional case.

$v_{0} \times\{a\} \quad v_{1} \times\{a\}$

The construction of an n-cube-like complex

Definition

$S=\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}:$ an n-simplex; $a, b \in L$.
An S-doubled complex $d c(S)_{a}^{b}$ is an abstract complex $\mathcal{K}(\mathcal{F}) \subset \mathcal{P}(S \times\{a, b\})$ generated by

$$
\mathcal{F}=\left\{\left\{\left(v_{0}, a\right), \ldots,\left(v_{i}, a\right),\left(v_{i}, b\right), \ldots,\left(v_{n}, b\right)\right\}: i \in\{0,1, \ldots, n\}\right\}
$$

Example

An S-doubled complex in 1-dimensional case.

$v_{0} \times\{a\} \quad v_{1} \times\{a\}$

The construction of an n-cube-like complex

Definition

The product of an n-cube-like complex \mathcal{K}^{n} and a set $L=\left\{t_{0}, \ldots, t_{l}\right\}$:

$$
\mathcal{K}^{n} \stackrel{\circ}{\times} L:=\bigcup_{i=0}^{I-1} \bigcup_{S \in \mathcal{K}^{n}} d c(S)_{t_{i}}^{t_{i+1}} .
$$

The construction of an n-cube-like complex

Definition

The product of an n-cube-like complex \mathcal{K}^{n} and a set $L=\left\{t_{0}, \ldots, t_{l}\right\}$:

$$
\mathcal{K}^{n} \stackrel{\circ}{\times} L:=\bigcup_{i=0}^{I-1} \bigcup_{S \in \mathcal{K}^{n}} d c(S)_{t_{i}}^{t_{i+1}} .
$$

The construction of an n-cube-like complex

Definition

The product of an n-cube-like complex \mathcal{K}^{n} and a set $L=\left\{t_{0}, \ldots, t_{l}\right\}$:

$$
\mathcal{K}^{n} \stackrel{\circ}{\times} L:=\bigcup_{i=0}^{I-1} \bigcup_{S \in \mathcal{K}^{n}} d c(S)_{t_{i}}^{t_{i+1}} .
$$

The construction of an n-cube-like complex

Definition

The product of an n-cube-like complex \mathcal{K}^{n} and a set $L=\left\{t_{0}, \ldots, t_{l}\right\}$:

$$
\mathcal{K}^{n} \stackrel{\circ}{\times} L:=\bigcup_{i=0}^{I-1} \bigcup_{S \in \mathcal{K}^{n}} d c(S)_{t_{i}}^{t_{i+1}} .
$$

The construction of an n-cube-like complex

Definition

The product of an n-cube-like complex \mathcal{K}^{n} and a set $L=\left\{t_{0}, \ldots, t_{l}\right\}$:

$$
\mathcal{K}^{n} \stackrel{\circ}{\times} L:=\bigcup_{i=0}^{I-1} \bigcup_{S \in \mathcal{K}^{n}} d c(S)_{t_{i}}^{t_{i+1}} .
$$

The construction of an n-cube-like complex

Definition

The product of an n-cube-like complex \mathcal{K}^{n} and a set $L=\left\{t_{0}, \ldots, t_{l}\right\}$:

$$
\mathcal{K}^{n} \stackrel{\circ}{\times} L:=\bigcup_{i=0}^{I-1} \bigcup_{S \in \mathcal{K}^{n}} d c(S)_{t_{i}}^{t_{i+1}} .
$$

The construction of an n-cube-like complex

Definition

The product of an n-cube-like complex \mathcal{K}^{n} and a set $L=\left\{t_{0}, \ldots, t_{l}\right\}$:

$$
\mathcal{K}^{n} \stackrel{\circ}{\times} L:=\bigcup_{i=0}^{I-1} \bigcup_{S \in \mathcal{K}^{n}} d c(S)_{t_{i}}^{t_{i+1}} .
$$

The construction of an n-cube-like complex

Definition

The product of an n-cube-like complex \mathcal{K}^{n} and a set $L=\left\{t_{0}, \ldots, t_{l}\right\}$:

$$
\mathcal{K}^{n} \stackrel{\circ}{\times} L:=\bigcup_{i=0}^{I-1} \bigcup_{S \in \mathcal{K}^{n}} d c(S)_{t_{i}}^{t_{i+1}} .
$$

The construction of an n-cube-like complex

Definition

The product of an n-cube-like complex \mathcal{K}^{n} and a set $L=\left\{t_{0}, \ldots, t_{l}\right\}$:

$$
\mathcal{K}^{n} \stackrel{\circ}{\times} L:=\bigcup_{i=0}^{I-1} \bigcup_{S \in \mathcal{K}^{n}} d c(S)_{t_{i}}^{t_{i+1}} .
$$

The construction of an n-cube-like complex

Definition

The product of an n-cube-like complex \mathcal{K}^{n} and a set $L=\left\{t_{0}, \ldots, t_{l}\right\}$:

$$
\mathcal{K}^{n} \stackrel{\circ}{\times} L:=\bigcup_{i=0}^{I-1} \bigcup_{S \in \mathcal{K}^{n}} d c(S)_{t_{i}}^{t_{i+1}} .
$$

The construction of an n-cube-like complex

Definition

The product of an n-cube-like complex \mathcal{K}^{n} and a set $L=\left\{t_{0}, \ldots, t_{l}\right\}$:

$$
\mathcal{K}^{n} \stackrel{\circ}{\times} L:=\bigcup_{i=0}^{I-1} \bigcup_{S \in \mathcal{K}^{n}} d c(S)_{t_{i}}^{t_{i+1}} .
$$

The construction of an n-cube-like complex

Definition

The product of an n-cube-like complex \mathcal{K}^{n} and a set $L=\left\{t_{0}, \ldots, t_{l}\right\}$:

$$
\mathcal{K}^{n} \stackrel{\circ}{\times} L:=\bigcup_{i=0}^{I-1} \bigcup_{S \in \mathcal{K}^{n}} d c(S)_{t_{i}}^{t_{i+1}} .
$$

The construction of an n-cube-like complex

Definition

The product of an n-cube-like complex \mathcal{K}^{n} and a set $L=\left\{t_{0}, \ldots, t_{l}\right\}$:

$$
\mathcal{K}^{n} \stackrel{\circ}{\times} L:=\bigcup_{i=0}^{I-1} \bigcup_{S \in \mathcal{K}^{n}} d c(S)_{t_{i}}^{t_{i+1}} .
$$

The construction of an n-cube-like complex

Definition

The product of an n-cube-like complex \mathcal{K}^{n} and a set $L=\left\{t_{0}, \ldots, t_{l}\right\}$:

$$
\mathcal{K}^{n} \stackrel{\circ}{\times} L:=\bigcup_{i=0}^{I-1} \bigcup_{S \in \mathcal{K}^{n}} d c(S)_{t_{i}}^{t_{i+1}} .
$$

The construction of an n-cube-like complex

Definition

The product of an n-cube-like complex \mathcal{K}^{n} and a set $L=\left\{t_{0}, \ldots, t_{l}\right\}$:

$$
\mathcal{K}^{n} \stackrel{\circ}{\times} L:=\bigcup_{i=0}^{I-1} \bigcup_{S \in \mathcal{K}^{n}} d c(S)_{t_{i}}^{t_{i+1}} .
$$

$\mathcal{K}^{1} \times\left\{t_{2}\right\}$
$\mathcal{K}^{1} \times\left\{t_{1}\right\}$
$\mathcal{K}^{1} \times\left\{t_{0}\right\}$

The construction of an n-cube-like complex

Definition

The product of an n-cube-like complex \mathcal{K}^{n} and a set $L=\left\{t_{0}, \ldots, t_{l}\right\}$:

$$
\mathcal{K}^{n} \stackrel{\circ}{\times} L:=\bigcup_{i=0}^{I-1} \bigcup_{S \in \mathcal{K}^{n}} d c(S)_{t_{i}}^{t_{i+1}} .
$$

The construction of an n-cube-like complex

Definition

The product of an n-cube-like complex \mathcal{K}^{n} and a set $L=\left\{t_{0}, \ldots, t_{l}\right\}$:

$$
\mathcal{K}^{n} \stackrel{\circ}{\times} L:=\bigcup_{i=0}^{I-1} \bigcup_{S \in \mathcal{K}^{n}} d c(S)_{t_{i}}^{t_{i+1}} .
$$

The construction of an n-cube-like complex

Definition

The product of an n-cube-like complex \mathcal{K}^{n} and a set $L=\left\{t_{0}, \ldots, t_{l}\right\}$:

$$
\mathcal{K}^{n} \stackrel{\circ}{\times} L:=\bigcup_{i=0}^{I-1} \bigcup_{S \in \mathcal{K}^{n}} d c(S)_{t_{i}}^{t_{i+1}} .
$$

The construction of an n-cube-like complex

Definition

The product of an n-cube-like complex \mathcal{K}^{n} and a set $L=\left\{t_{0}, \ldots, t_{l}\right\}$:

$$
\mathcal{K}^{n} \stackrel{\circ}{\times} L:=\bigcup_{i=0}^{I-1} \bigcup_{S \in \mathcal{K}^{n}} d c(S)_{t_{i}}^{t_{i+1}} .
$$

The construction of an n-cube-like complex

Definition

The product of an n-cube-like complex \mathcal{K}^{n} and a set $L=\left\{t_{0}, \ldots, t_{l}\right\}$:

$$
\mathcal{K}^{n} \stackrel{\circ}{\times} L:=\bigcup_{i=0}^{I-1} \bigcup_{S \in \mathcal{K}^{n}} d c(S)_{t_{i}}^{t_{i+1}} .
$$

The construction of an n-cube-like complex

Definition

The product of an n-cube-like complex \mathcal{K}^{n} and a set $L=\left\{t_{0}, \ldots, t_{l}\right\}$:

$$
\mathcal{K}^{n} \stackrel{\circ}{\times} L:=\bigcup_{i=0}^{I-1} \bigcup_{S \in \mathcal{K}^{n}} d c(S)_{t_{i}}^{t_{i+1}} .
$$

$\mathcal{K}^{1} \times\left\{t_{3}\right\}$
$\mathcal{K}^{1} \times\left\{t_{2}\right\}$
$\mathcal{K}^{1} \times\left\{t_{1}\right\}$
$\mathcal{K}^{1} \times\left\{t_{0}\right\}$

The construction of an n-cube-like complex

Definition

The product of an n-cube-like complex \mathcal{K}^{n} and a set $L=\left\{t_{0}, \ldots, t_{l}\right\}$:

$$
\mathcal{K}^{n} \stackrel{\circ}{\times} L:=\bigcup_{i=0}^{I-1} \bigcup_{S \in \mathcal{K}^{n}} d c(S)_{t_{i}}^{t_{i+1}} .
$$

The construction of an n-cube-like complex

Definition

The product of an n-cube-like complex \mathcal{K}^{n} and a set $L=\left\{t_{0}, \ldots, t_{l}\right\}$:

$$
\mathcal{K}^{n} \stackrel{\circ}{\times} L:=\bigcup_{i=0}^{I-1} \bigcup_{S \in \mathcal{K}^{n}} d c(S)_{t_{i}}^{t_{i+1}} .
$$

$$
\begin{aligned}
\mathcal{K}^{1} \times\left\{t_{5}\right\} \\
\mathcal{K}^{1} \times\left\{t_{4}\right\} \\
\mathcal{K}^{1} \times\left\{t_{3}\right\} \\
\mathcal{K}^{1} \times\left\{t_{2}\right\} \\
\mathcal{K}^{1} \times\left\{t_{1}\right\} \\
\mathcal{K}^{1} \times\left\{t_{0}\right\}
\end{aligned}
$$

A combinatorial part

Lemma (MK, Tkacz 2015)
\mathcal{K}^{n} : an n-cube-like complex, $L=\left\{t_{0}, \ldots, t_{l}\right\}$
$\mathcal{K}^{n} \stackrel{\circ}{\times} \operatorname{L}$ is an $(n+1)$-cube-like complex

A combinatorial part

Lemma (MK, Tkacz 2015)

\mathcal{K}^{n} : an n-cube-like complex, $L=\left\{t_{0}, \ldots, t_{l}\right\}$

$$
\mathcal{K}^{n} \stackrel{\circ}{\times} \mathrm{L} \text { is an }(n+1) \text {-cube-like complex }
$$

$$
\begin{aligned}
& \mathcal{K}^{1} \times\left\{t_{5}\right\} \\
& \mathcal{K}^{1} \times\left\{t_{4}\right\} \\
& \mathcal{K}^{1} \times\left\{t_{3}\right\} \\
& \mathcal{K}^{1} \times\left\{t_{2}\right\} \\
& \mathcal{K}^{1} \times\left\{t_{1}\right\} \\
& \mathcal{K}^{1} \times\left\{t_{0}\right\}
\end{aligned}
$$

A combinatorial part

Lemma (MK, Tkacz 2015)

\mathcal{K}^{n} : an n-cube-like complex, $L=\left\{t_{0}, \ldots, t_{l}\right\}$

$$
\mathcal{K}^{n} \stackrel{\circ}{\times} L \text { is an }(n+1) \text {-cube-like complex }
$$

$$
\begin{aligned}
& \mathcal{K}^{1} \times\left\{t_{5}\right\} \\
& \mathcal{K}^{1} \times\left\{t_{4}\right\} \\
& \mathcal{K}^{1} \times\left\{t_{3}\right\} \\
& \mathcal{K}^{1} \times\left\{t_{2}\right\} \\
& \mathcal{K}^{1} \times\left\{t_{1}\right\} \\
& \mathcal{K}^{1} \times\left\{t_{0}\right\}
\end{aligned}
$$

A combinatorial part

Lemma (MK, Tkacz 2015)

\mathcal{K}^{n} : an n-cube-like complex, $L=\left\{t_{0}, \ldots, t_{l}\right\}$

$$
\mathcal{K}^{n} \stackrel{\circ}{\times} L \text { is an }(n+1) \text {-cube-like complex }
$$

$$
\begin{aligned}
\mathcal{K}^{1} & \times\left\{t_{5}\right\} \\
\mathcal{K}^{1} & \times\left\{t_{4}\right\} \\
\mathcal{K}^{1} & \times\left\{t_{3}\right\} \\
\mathcal{K}^{1} & \times\left\{t_{2}\right\} \\
\mathcal{K}^{1} & \times\left\{t_{1}\right\} \\
\mathcal{K}^{1} & \times\left\{t_{0}\right\}
\end{aligned}
$$

A combinatorial part

Lemma (MK, Tkacz 2015)

\mathcal{K}^{n} : an n-cube-like complex, $L=\left\{t_{0}, \ldots, t_{l}\right\}$

$$
\mathcal{K}^{n} \stackrel{\circ}{\times} \mathrm{L} \text { is an }(n+1) \text {-cube-like complex }
$$

A combinatorial part

Lemma (MK, Tkacz 2015)

Let $\phi:\left|\mathcal{K}^{n} \times \stackrel{\circ}{\times} L\right| \rightarrow\{0, \ldots, n\}$ be a map such that

$$
\forall_{i \leqslant n} \phi\left(\left|\mathcal{F}_{i}^{-}\right|\right) \neq i, \phi\left(\left|\mathcal{F}_{i}^{+}\right|\right) \neq i-1
$$

Then there exists the chain S_{1}, \ldots, S_{m} such that

$$
\phi\left(S_{1} \cap\left|\left(\mathcal{K}^{n} \times\left\{t_{0}\right\}\right)\right|\right)=\{0, \ldots, n\}=\phi\left(S_{m} \cap\left|\left(\mathcal{K}^{n} \times\left\{t_{l}\right\}\right)\right|\right) .
$$

A combinatorial part

Lemma (MK, Tkacz 2015)

Let $\phi:\left|\mathcal{K}^{n} \stackrel{\circ}{\times} L\right| \rightarrow\{0, \ldots, n\}$ be a map such that

$$
\forall_{i \leqslant n} \phi\left(\left|\mathcal{F}_{i}^{-}\right|\right) \neq i, \phi\left(\left|\mathcal{F}_{i}^{+}\right|\right) \neq i-1
$$

Then there exists the chain S_{1}, \ldots, S_{m} such that

$$
\phi\left(S_{1} \cap\left|\left(\mathcal{K}^{n} \times\left\{t_{0}\right\}\right)\right|\right)=\{0, \ldots, n\}=\phi\left(S_{m} \cap\left|\left(\mathcal{K}^{n} \times\left\{t_{l}\right\}\right)\right|\right) .
$$

\mathcal{F}_{2}

A combinatorial part

Lemma (MK, Tkacz 2015)

Let $\phi:\left|\mathcal{K}^{n} \stackrel{\circ}{\times} L\right| \rightarrow\{0, \ldots, n\}$ be a map such that

$$
\forall_{i \leqslant n} \phi\left(\left|\mathcal{F}_{i}^{-}\right|\right) \neq i, \phi\left(\left|\mathcal{F}_{i}^{+}\right|\right) \neq i-1
$$

Then there exists the chain S_{1}, \ldots, S_{m} such that

$$
\phi\left(S_{1} \cap\left|\left(\mathcal{K}^{n} \times\left\{t_{0}\right\}\right)\right|\right)=\{0, \ldots, n\}=\phi\left(S_{m} \cap\left|\left(\mathcal{K}^{n} \times\left\{t_{l}\right\}\right)\right|\right) .
$$

A combinatorial part

Lemma (MK, Tkacz 2015)

Let $\phi:\left|\mathcal{K}^{n} \stackrel{\circ}{\times} L\right| \rightarrow\{0, \ldots, n\}$ be a map such that

$$
\forall_{i \leqslant n} \phi\left(\left|\mathcal{F}_{i}^{-}\right|\right) \neq i, \phi\left(\left|\mathcal{F}_{i}^{+}\right|\right) \neq i-1
$$

Then there exists the chain S_{1}, \ldots, S_{m} such that

$$
\phi\left(S_{1} \cap\left|\left(\mathcal{K}^{n} \times\left\{t_{0}\right\}\right)\right|\right)=\{0, \ldots, n\}=\phi\left(S_{m} \cap\left|\left(\mathcal{K}^{n} \times\left\{t_{l}\right\}\right)\right|\right) .
$$

A combinatorial part

Lemma (MK, Tkacz 2015)

Let $\phi:\left|\mathcal{K}^{n} \stackrel{\circ}{\times} L\right| \rightarrow\{0, \ldots, n\}$ be a map such that

$$
\forall_{i \leqslant n} \phi\left(\left|\mathcal{F}_{i}^{-}\right|\right) \neq i, \phi\left(\left|\mathcal{F}_{i}^{+}\right|\right) \neq i-1
$$

Then there exists the chain S_{1}, \ldots, S_{m} such that

$$
\phi\left(S_{1} \cap\left|\left(\mathcal{K}^{n} \times\left\{t_{0}\right\}\right)\right|\right)=\{0, \ldots, n\}=\phi\left(S_{m} \cap\left|\left(\mathcal{K}^{n} \times\left\{t_{l}\right\}\right)\right|\right) .
$$

A combinatorial part

Lemma (MK, Tkacz 2015)

Let $\phi:\left|\mathcal{K}^{n} \stackrel{\circ}{\times} L\right| \rightarrow\{0, \ldots, n\}$ be a map such that

$$
\forall_{i \leqslant n} \phi\left(\left|\mathcal{F}_{i}^{-}\right|\right) \neq i, \phi\left(\left|\mathcal{F}_{i}^{+}\right|\right) \neq i-1
$$

Then there exists the chain S_{1}, \ldots, S_{m} such that

$$
\phi\left(S_{1} \cap\left|\left(\mathcal{K}^{n} \times\left\{t_{0}\right\}\right)\right|\right)=\{0, \ldots, n\}=\phi\left(S_{m} \cap\left|\left(\mathcal{K}^{n} \times\left\{t_{l}\right\}\right)\right|\right) .
$$

A combinatorial part

Lemma (MK, Tkacz 2015)

Let $\phi:\left|\mathcal{K}^{n} \stackrel{\circ}{\times} L\right| \rightarrow\{0, \ldots, n\}$ be a map such that

$$
\forall_{i \leqslant n} \phi\left(\left|\mathcal{F}_{i}^{-}\right|\right) \neq i, \phi\left(\left|\mathcal{F}_{i}^{+}\right|\right) \neq i-1
$$

Then there exists the chain S_{1}, \ldots, S_{m} such that

$$
\phi\left(S_{1} \cap\left|\left(\mathcal{K}^{n} \times\left\{t_{0}\right\}\right)\right|\right)=\{0, \ldots, n\}=\phi\left(S_{m} \cap\left|\left(\mathcal{K}^{n} \times\left\{t_{l}\right\}\right)\right|\right) .
$$

A combinatorial part

Lemma (MK, Tkacz 2015)

Let $\phi:\left|\mathcal{K}^{n} \stackrel{\circ}{\times} L\right| \rightarrow\{0, \ldots, n\}$ be a map such that

$$
\forall_{i \leqslant n} \phi\left(\left|\mathcal{F}_{i}^{-}\right|\right) \neq i, \phi\left(\left|\mathcal{F}_{i}^{+}\right|\right) \neq i-1
$$

Then there exists the chain S_{1}, \ldots, S_{m} such that

$$
\phi\left(S_{1} \cap\left|\left(\mathcal{K}^{n} \times\left\{t_{0}\right\}\right)\right|\right)=\{0, \ldots, n\}=\phi\left(S_{m} \cap\left|\left(\mathcal{K}^{n} \times\left\{t_{l}\right\}\right)\right|\right) .
$$

A combinatorial part

Lemma (MK, Tkacz 2015)

Let $\phi:\left|\mathcal{K}^{n} \stackrel{\circ}{\times} L\right| \rightarrow\{0, \ldots, n\}$ be a map such that

$$
\forall_{i \leqslant n} \phi\left(\left|\mathcal{F}_{i}^{-}\right|\right) \neq i, \phi\left(\left|\mathcal{F}_{i}^{+}\right|\right) \neq i-1
$$

Then there exists the chain S_{1}, \ldots, S_{m} such that

$$
\phi\left(S_{1} \cap\left|\left(\mathcal{K}^{n} \times\left\{t_{0}\right\}\right)\right|\right)=\{0, \ldots, n\}=\phi\left(S_{m} \cap\left|\left(\mathcal{K}^{n} \times\left\{t_{l}\right\}\right)\right|\right) .
$$

A combinatorial part

Lemma (MK, Tkacz 2015)

Let $\phi:\left|\mathcal{K}^{n} \stackrel{\circ}{\times} L\right| \rightarrow\{0, \ldots, n\}$ be a map such that

$$
\forall_{i \leqslant n} \phi\left(\left|\mathcal{F}_{i}^{-}\right|\right) \neq i, \phi\left(\left|\mathcal{F}_{i}^{+}\right|\right) \neq i-1
$$

Then there exists the chain S_{1}, \ldots, S_{m} such that

$$
\phi\left(S_{1} \cap\left|\left(\mathcal{K}^{n} \times\left\{t_{0}\right\}\right)\right|\right)=\{0, \ldots, n\}=\phi\left(S_{m} \cap\left|\left(\mathcal{K}^{n} \times\left\{t_{l}\right\}\right)\right|\right) .
$$

A combinatorial part

Lemma (MK, Tkacz 2015)

Let $\phi:\left|\mathcal{K}^{n} \stackrel{\circ}{\times} L\right| \rightarrow\{0, \ldots, n\}$ be a map such that

$$
\forall_{i \leqslant n} \phi\left(\left|\mathcal{F}_{i}^{-}\right|\right) \neq i, \phi\left(\left|\mathcal{F}_{i}^{+}\right|\right) \neq i-1
$$

Then there exists the chain S_{1}, \ldots, S_{m} such that

$$
\phi\left(S_{1} \cap\left|\left(\mathcal{K}^{n} \times\left\{t_{0}\right\}\right)\right|\right)=\{0, \ldots, n\}=\phi\left(S_{m} \cap\left|\left(\mathcal{K}^{n} \times\left\{t_{l}\right\}\right)\right|\right) .
$$

A combinatorial part

Lemma (MK, Tkacz 2015)

Let $\phi:\left|\mathcal{K}^{n} \stackrel{\circ}{\times} L\right| \rightarrow\{0, \ldots, n\}$ be a map such that

$$
\forall_{i \leqslant n} \phi\left(\left|\mathcal{F}_{i}^{-}\right|\right) \neq i, \phi\left(\left|\mathcal{F}_{i}^{+}\right|\right) \neq i-1
$$

Then there exists the chain S_{1}, \ldots, S_{m} such that

$$
\phi\left(S_{1} \cap\left|\left(\mathcal{K}^{n} \times\left\{t_{0}\right\}\right)\right|\right)=\{0, \ldots, n\}=\phi\left(S_{m} \cap\left|\left(\mathcal{K}^{n} \times\left\{t_{l}\right\}\right)\right|\right) .
$$

A combinatorial part

Lemma (MK, Tkacz 2015)

Let $\phi:\left|\mathcal{K}^{n} \stackrel{\circ}{\times} L\right| \rightarrow\{0, \ldots, n\}$ be a map such that

$$
\forall_{i \leqslant n} \phi\left(\left|\mathcal{F}_{i}^{-}\right|\right) \neq i, \phi\left(\left|\mathcal{F}_{i}^{+}\right|\right) \neq i-1
$$

Then there exists the chain S_{1}, \ldots, S_{m} such that

$$
\phi\left(S_{1} \cap\left|\left(\mathcal{K}^{n} \times\left\{t_{0}\right\}\right)\right|\right)=\{0, \ldots, n\}=\phi\left(S_{m} \cap\left|\left(\mathcal{K}^{n} \times\left\{t_{l}\right\}\right)\right|\right) .
$$

A combinatorial part

Lemma (MK, Tkacz 2015)

Let $\phi:\left|\mathcal{K}^{n} \stackrel{\circ}{\times} L\right| \rightarrow\{0, \ldots, n\}$ be a map such that

$$
\forall_{i \leqslant n} \phi\left(\left|\mathcal{F}_{i}^{-}\right|\right) \neq i, \phi\left(\left|\mathcal{F}_{i}^{+}\right|\right) \neq i-1
$$

Then there exists the chain S_{1}, \ldots, S_{m} such that

$$
\phi\left(S_{1} \cap\left|\left(\mathcal{K}^{n} \times\left\{t_{0}\right\}\right)\right|\right)=\{0, \ldots, n\}=\phi\left(S_{m} \cap\left|\left(\mathcal{K}^{n} \times\left\{t_{l}\right\}\right)\right|\right) .
$$

A combinatorial part

Lemma (MK, Tkacz 2015)

Let $\phi:\left|\mathcal{K}^{n} \stackrel{\circ}{\times} L\right| \rightarrow\{0, \ldots, n\}$ be a map such that

$$
\forall_{i \leqslant n} \phi\left(\left|\mathcal{F}_{i}^{-}\right|\right) \neq i, \phi\left(\left|\mathcal{F}_{i}^{+}\right|\right) \neq i-1
$$

Then there exists the chain S_{1}, \ldots, S_{m} such that

$$
\phi\left(S_{1} \cap\left|\left(\mathcal{K}^{n} \times\left\{t_{0}\right\}\right)\right|\right)=\{0, \ldots, n\}=\phi\left(S_{m} \cap\left|\left(\mathcal{K}^{n} \times\left\{t_{l}\right\}\right)\right|\right) .
$$

A combinatorial part

Lemma (MK, Tkacz 2015)

Let $\phi:\left|\mathcal{K}^{n} \stackrel{\circ}{\times} L\right| \rightarrow\{0, \ldots, n\}$ be a map such that

$$
\forall_{i \leqslant n} \phi\left(\left|\mathcal{F}_{i}^{-}\right|\right) \neq i, \phi\left(\left|\mathcal{F}_{i}^{+}\right|\right) \neq i-1
$$

Then there exists the chain S_{1}, \ldots, S_{m} such that

$$
\phi\left(S_{1} \cap\left|\left(\mathcal{K}^{n} \times\left\{t_{0}\right\}\right)\right|\right)=\{0, \ldots, n\}=\phi\left(S_{m} \cap\left|\left(\mathcal{K}^{n} \times\left\{t_{l}\right\}\right)\right|\right) .
$$

A combinatorial part

Lemma (MK, Tkacz 2015)

Let $\phi:\left|\mathcal{K}^{n} \stackrel{\circ}{\times} L\right| \rightarrow\{0, \ldots, n\}$ be a map such that

$$
\forall_{i \leqslant n} \phi\left(\left|\mathcal{F}_{i}^{-}\right|\right) \neq i, \phi\left(\left|\mathcal{F}_{i}^{+}\right|\right) \neq i-1
$$

Then there exists the chain S_{1}, \ldots, S_{m} such that

$$
\phi\left(S_{1} \cap\left|\left(\mathcal{K}^{n} \times\left\{t_{0}\right\}\right)\right|\right)=\{0, \ldots, n\}=\phi\left(S_{m} \cap\left|\left(\mathcal{K}^{n} \times\left\{t_{l}\right\}\right)\right|\right) .
$$

A combinatorial part

Lemma (MK, Tkacz 2015)

Let $\phi:\left|\mathcal{K}^{n} \stackrel{\circ}{\times} L\right| \rightarrow\{0, \ldots, n\}$ be a map such that

$$
\forall_{i \leqslant n} \phi\left(\left|\mathcal{F}_{i}^{-}\right|\right) \neq i, \phi\left(\left|\mathcal{F}_{i}^{+}\right|\right) \neq i-1
$$

Then there exists the chain S_{1}, \ldots, S_{m} such that

$$
\phi\left(S_{1} \cap\left|\left(\mathcal{K}^{n} \times\left\{t_{0}\right\}\right)\right|\right)=\{0, \ldots, n\}=\phi\left(S_{m} \cap\left|\left(\mathcal{K}^{n} \times\left\{t_{l}\right\}\right)\right|\right) .
$$

A topological part

Definition

The polyherdron in R^{m} is said to be an n-cube-like polyhedron, if its vertex-scheme abstract complex is an n-cube-like complex.

A topological part

Definition

The polyherdron in R^{m} is said to be an n-cube-like polyhedron, if its vertex-scheme abstract complex is an n-cube-like complex.

Definition

The product of an n-cube-like polyhedron and a set L is defined by

$$
\widetilde{\mathcal{K}}^{n} \stackrel{\circ}{\times} L:=\left\{\operatorname{conv} S: S \in \mathcal{K}^{n} \times \stackrel{\circ}{\times} L\right\} .
$$

A topological part

Definition

The polyherdron in R^{m} is said to be an n-cube-like polyhedron, if its vertex-scheme abstract complex is an n-cube-like complex.

Definition

The product of an n-cube-like polyhedron and a set L is defined by

$$
\widetilde{\mathcal{K}}^{n} \stackrel{\circ}{\times} L:=\left\{\operatorname{conv} S: S \in \mathcal{K}^{n} \times \circ\right. \text { ㅇ. }
$$

Theorem (MK, Tkacz 2015)

Let $\left\{\left(H_{i}^{-}, H_{i}^{+}\right): i \in\{1, \ldots, n\}\right\}$ be a family of pairs of closed sets s. t.

$$
\left|\widetilde{\mathcal{F}}_{i}^{-}\right| \subset H_{i}^{-},\left|\widetilde{\mathcal{F}}_{i}^{+}\right| \subset H_{i}^{+} \quad \text { and }\left|\widetilde{\mathcal{K}}^{n} \times \stackrel{\circ}{\times} L\right|=H_{i}^{-} \cup H_{i}^{+},
$$

then there exists a continuum $W \subset \bigcap_{i=1}^{n} H_{i}^{-} \cap H_{i}^{+}$with

$$
W \cap\left|\widetilde{\mathcal{K}}^{n}\right| \times\left\{t_{0}\right\} \neq \emptyset \neq W \cap\left|\widetilde{\mathcal{K}}^{n}\right| \times\left\{t_{1}\right\} .
$$

An extension of the Poincaré-Miranda theorem

Theorem (MK, Tkacz 2015)
Let $\left(\left|\widetilde{\mathcal{K}}^{n}\right|, \widetilde{\mathcal{K}}^{n}\right)$ be an n-cube-like polyhedron in R^{m}

$$
\begin{gathered}
f=\left(f_{1}, \ldots, f_{n}\right):\left|\widetilde{\mathcal{K}}^{n}\right| \rightarrow R^{n} \text { such that } \\
\forall_{i \leqslant n} f_{i}\left(\left|\mathcal{F}_{i}^{-}\right|\right) \subset(-\infty, 0], f_{i}\left(\left|\mathcal{F}_{i}^{+}\right|\right) \subset[0, \infty) .
\end{gathered}
$$

Then there exists $c \in\left|\widetilde{\mathcal{K}}^{n}\right|$ such that $f(c)=(0,0, \ldots, 0)$.

An extension of the Poincaré-Miranda theorem

Theorem (MK, Tkacz 2015)

Let $\left(\left|\widetilde{\mathcal{K}}^{n}\right|, \widetilde{\mathcal{K}}^{n}\right)$ be an n-cube-like polyhedron in R^{m}

$$
\begin{gathered}
f=\left(f_{1}, \ldots, f_{n}\right):\left|\widetilde{\mathcal{K}}^{n}\right| \rightarrow R^{n} \text { such that } \\
\forall_{i \leqslant n} f_{i}\left(\left|\mathcal{F}_{i}^{-}\right|\right) \subset(-\infty, 0], f_{i}\left(\left|\mathcal{F}_{i}^{+}\right|\right) \subset[0, \infty) .
\end{gathered}
$$

Then there exists $c \in\left|\widetilde{\mathcal{K}}^{n}\right|$ such that $f(c)=(0,0, \ldots, 0)$.

An extension of the Poincaré-Miranda theorem

Theorem (MK, Tkacz 2015)

Let $\left(\left|\widetilde{\mathcal{K}}^{n}\right|, \widetilde{\mathcal{K}}^{n}\right)$ be an n-cube-like polyhedron in R^{m}

$$
\begin{gathered}
f=\left(f_{1}, \ldots, f_{n}\right):\left|\widetilde{\mathcal{K}}^{n}\right| \rightarrow R^{n} \text { such that } \\
\forall_{i \leqslant n} f_{i}\left(\left|\mathcal{F}_{i}^{-}\right|\right) \subset(-\infty, 0], f_{i}\left(\left|\mathcal{F}_{i}^{+}\right|\right) \subset[0, \infty) .
\end{gathered}
$$

Then there exists $c \in\left|\widetilde{\mathcal{K}}^{n}\right|$ such that $f(c)=(0,0, \ldots, 0)$.

Theorem (A parametric version; MK, Tkacz 2015)

Let $\left(\left|\widetilde{\mathcal{K}}^{n}\right|, \widetilde{\mathcal{K}}^{n}\right)$ be an n-cube-like polyhedron in $R^{m}, L=\left\{t_{0}, \ldots, t_{1}\right\} \subset R^{k}$,

$$
\begin{gathered}
f=\left(f_{1}, \ldots, f_{n}\right):\left|\widetilde{\mathcal{K}}^{n} \stackrel{\circ}{\times} L\right| \rightarrow R^{n} \text { such that } \\
\forall_{i \leqslant n} f_{i}\left(\left|\widetilde{\mathcal{F}}_{i}^{-}\right|\right) \subset(-\infty, 0], f_{i}\left(\left|\widetilde{\mathcal{F}}_{i}^{+}\right|\right) \subset[0, \infty) .
\end{gathered}
$$

Then there exists a continuum $W \subset f^{-1}(0)$ with

$$
W \cap\left(\left|\widetilde{\mathcal{K}}^{n}\right| \times\left\{t_{0}\right\}\right) \neq \emptyset \neq W \cap\left(\left|\widetilde{\mathcal{K}}^{n}\right| \times\left\{t_{1}\right\}\right) .
$$

